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SECTION 1. INTRODUCTION

The accuracy of a free—flight rocket depends significantly on the

transverse angular rate of the rocket at the time it is no longer

physically constrained by the launcher guidance mechanism, i .e . ,  at

end of guidance (EOG) . If the causes of such angular rates cannot be

accurately predicted and proper allowances made for them , an accurate

free—flight  rocket system cannot be constructed, except perhaps by

trial and error . Historically, launcher motion and guidance mechanism

imperfections have been considered principal causes of transverse angular

rates of free—flight rockets at EOG. Dynamic imbalance of spinning

rockets and thrus t misalignment have also been recognized as resulting

in what are effectively secular transverse an gular rates at EOG .

Due to difficulties in interpreting optical lever data in the light

of only the recognized error sources mentioned above, and to the fact

that the data in question evidenced considerable transverse bending of

rockets, both during and subsequent to guidance,’ it was suspected that

there was a strong correlation between transverse vibration of a

free—flight  rocket during guidance and its transverse angular rate

subsequent to EOG. Through a previous research effor t , 2 it was shown ,

on the basis of a simple two—body model of a spinning flexible rocket,

that if such a rocket is vibrating transversely at EOG then, in general,

it will possess a non—zero transverse angular rate subsequent to EOG.

Furthermore , two—body model results indicate that the transverse angular

rate attributable solely to transverse vibration may be on the order of

1
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100 mrad/sec. To put this in persp’~ctive, it is desirable that the initial

transverse angular rate of a free—flight rocket (which cannot be treated

as a bias) be no greater than, say 10 mrad/sec . It follows that the

problem of transverse vibrations must be dealt with if such a system is

to be achieved.

Recent research has provided a more detailed model (assumed—modes

model) of a spinning flexible rocket which has been used3 to validate the

two—body model and also to obtain certain results presented herein. In

addition to the development of the aforesaid model, the following objec-

tives were established at the beginning of this effort: (1) to gain a

better understanding of the mechanism whereby transverse vibrations are

transformed into transverse angular rates, (2) to determine probable

causes of transverse vibration and (3) to recommend ways of reducing trans-

verse vibration during guidance and/or its adverse effects. The following

sections of this report describe the approaches taken in pursuit of these

objectives and the principal results of this study .

In Section 2, the effects of transverse vibration which is present

at EOG are considered without regard for the cause, or causes, of such

vibration. The two models mentioned above are described, and physical

explanations for the post—launch transverse angular rate generally associated

with transverse vibration are given. Some results obtained using the

mathematical models based on the two—body and assumed—modes models are

presented . Methods for analyzing optical lever data not considering

vibration, and also considering it , are described in Section 3. Probable

causes of transverse vibration of a free—flight rocket during guidance a~e

discussed in Section 4. Results are presented for two probable causes,

— -~~~- — — — - 
~ —~~—w -

~~ - —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~ 
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3

support imperfections and friction . Conclusions and recommendations

follow in Section 5. Most of the mathematical details are relegated to

appendices.

The term “mallaunch” is avoided in this report, because the meanings

attributed to it by various individuals are not the same. Instead , we

shall use the expression, “transverse angular rate at end of guidance”

in which “transverse angular rate” refers to the magnitude of the angular

velocity of the instantaneous centroidal principal axes of the vibrating

rocket and “end of guidance” is an event which occurs at the time of last

intended physical contact between the rocket and its launcher.

c

I s -
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SECTION 2. EFFECTS OF TRANSVERSE VIBRATION

2.1 Description of Models

As stated previously , two models of a spinning flexible rocket have

been developed and used to study the effects of transverse vibration of

such a rocket during the guidance phase of its flight on its motion

subsequent to EOG. One , the two—bod y model , is fairly simple — as simple

as possible, it is felt, if the effects of transverse vibration are to be

modeled. The other, which we call the continuous model and also the assumed—

modes model, is more detailed.

F The Two—Body Model

The two-body model consists, as its name implies, of two “cylindrical”

rigid bodies (see Fig. 1) which are connected by torsional springs, viscous

dampers and a “hinge”. Then allow ”transverse” angular rotation of the

bodies relative to each other. Here, “transverse” is used to indicate

motion orthogonal to the longest axis of either body. In most of the work

which has been done, both bodies have been assumed to be axisyinmetric and

homogeneous. These assumptions could have been avoided, but to do so

would have resulted in a more complex mathematical model, and they are

very proper for the type of rockets considered.

As shown in Fig. 1, the af t body is denoted by Body 1 and the other by

Body 2. Body i’s center of mass Is C
1
. The hinge point is R and the

points P and Q are points on the geometric centerlines of Bodies 1 and 2,

respectively. The points P and Q are constrained to move rectilinearly

while the rocke t is on the launch er , if the mechanism which supports the

rocket is rigid. If the supporting mechanism is flexible, as is assumed

4
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5

to obtain some of the results given in Section 4, then the points P and

Q are constrained in another manner (see Appendix D).

(b)

y
l.

Fig. 1. Two—body physical model. (a) On launcher. (b) Of f launcher.

The bodies are truly rigid in that their masses are constant. Since

the time period considered is that from ignition to shortly after EOG,

this assumption is a good one if the rocket’s mass does not change substan-

tially during this short time period . The constant mass assumption is also necessary if.

the closed—form solution to the equations of rotational motion given in

Appendix A is to be obtained. Although the mass is assumed constant, a

constan t magnitude thrust force 
~~~ 

is assumed present. The thrust

- -~~~--‘~ ~~~-~— - r~~~~~~ 
- -—~~~~-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~—. ~~~~~~~~~~~~~~~~ 
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6

acts through point P and is not necessarily aligned with the longitudinal

axis of Body 1. That is, mechanical thrust misalignment may be modeled.

Another basic assumption which allows the closed—form solution to be

obtained is that aerodynamic reactions (force and moment) are negligible

during the time of interest. This assumption is a good one if the

magnitude of the velocity of the rocket’s center of mass is “sufficiently”

small in magnitude, say less than 100 rn/sec.

The spin rate of the rocket is also assumed constant to obtain the

closed—form solution, But it is modeled as variable when the effects of

friction (Section 4 and Appendix D) are considered.

The Assumed—Modes Model

The name “assumed—modes model” was coined because certain mode shapes

were “assumed” in mathematically modeling (see Appendix B) the transverse

vibrations of the rocket, which is modeled physically as a continuous

flexible body. Two sketches of the continuous physical model are shown in

Fig. 2. Figure 2a shows how during the guidance phase two points, P and

Q, on the deformed centerline of the rocket model are constrained to move

rectilinearly. After EOG (see Fig. 2b ’
~ the points P and Q may move

arbitrarily. The rocket’s mass is assumed to be constant and a thrust

force (possibly time varying) acts on the rocket. The axial component of

this force is assumed to act at the head end of the rocket motor section;

however , the effects of transverse vibration in turning the flow of the

rocket exhaust gases as they exit and mechanical misalignment of the

rocket nozzle are modeled by transverse thrust components which act at

point P. An additional characteristic of the continuous, or assumed—modes,

model is that the undeformed shape of the rocket can be “nonstraight,”

~~~~~~ wr ~~~~~~~~~~~~~~~~ 
- ‘— —‘~~~~~~~~~~~ ‘ 
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7

thereby allowing for imperfections in motor section to warhead section

connections or “non—straightness” of the rocket for other reasons.

Fig. 2. Continuous physical model. (a) On launcher. (b) Of f launcher.

The transverse vibration of the continuous rocket model during guidance

is modeled mathematically using pinned—pinned—free normal mode shapes of a

uniform beam. 2 At EOG , a transformation is made so that free—free bending 
-

mode shapes of a uniform beam can be used for the free—flight portion of

the rocket’s flight.2

— • ~~~~~~~~~~~~~~~~~ ~~~
. —— —  ...W -
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In the assumed—modes model, the spin torque may be time varying.

Thus, a spin producing device such as an eroding spin turbine” can be

modeled .

In Section 4, the effects of supporting the rocket at three points

during guidance are studied. Although this could be done by using pinned—

pinned—pinned—free normal mode shapes for a uniform beam, the approach

taken was to constrain a third point (between P and Q) to follow a pre-

determined path as the rocket moves longitudinally.

2.2 Causes of Transverse Angular Rates

There are numerous possible causes of transverse angular rates of

free—flight rockets. Some are:

1. Exhaust flow interference, including “blow—by” and blast
impingement from a previously launched rocket on the launcher.

2. Dynamic imbalance of the rocket.

3. Rocket thrust anomalies due to mechanical misalignment of
the rocket nozzle and unsteady flow within the rocket.

4. Elastic deformations of the rocket.

5. Elastic deformations of the launcher.

6. Guidance mechanism imperfections.

Forces caused by flow interference in the form of blow—by may be

sufficient to produce transverse angular rates on the order of 100 mrad/sec

according to Booker.” Dynamic imbalance can cause a long period preces-

sional motion of the unbalanced rocket which appears in attitude data to be

a secular transverse angular rate of considerable magnitude, say 57 mrad/sec

for a spin rate of 9 rps and a 1 mrad angular misalignment of the principal

axis of least inertia (PALl). Thrust misalignment of a mechanical nature may

~ -~~-. r  — -
~ — ~~-w .#‘ -. ~~~~~~~~~~~~~~~~~ 

_
~~~~~~~~~

•
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produce similar rates. As mentioned, elastic vibration of a spinning

flexible rocket may result in rates on the order of 100 mrad/sec, while

elastic deformations of the launcher itself, especially the launch rail

or tube, may produce similar magnitude rates.

In the effort reported here, elastic deformations of the rocket

were considered of principal interest. For purposes of comparison and to

match optical lever data, we also consider thrust misalignment. We note

that thrust misalignment may, in fact, be caused by a static elastic de-

formation of the rocket. Hence, thrust misalignment and elastic deforma-

tions of the rocket are sometimes related. Also, the effects of dynamic

imbalance, which could be caused by static bending of the rocket, are

much like those of thrust misalignment. If the thrust and spin rate of

the rocket are essentially constant, or there is available attitude data

over only a short time period, the two are generally indistinguishable.

With these thoughts as background, we now consider transverse vibrations

as “causes” of transverse angular rates.

2.3 How Transverse Vibration Causes Transverse Angular Rates

A physical explanation for the way in which transverse vibration of a

rocket during the guidance phase results in a transverse angular rate of

the rocket at EOG is first given in what follows. On the basis of this

physical explanation, the two—body physical and mathematical models are

used to obtain a simple mathematical expression for the transverse angular

rate which results from transverse vibration.‘

~~~~~ ~~~~~ ~“Ti~iTJ T~T1 ~II TIT
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Physical Explanation

Assume tha t a rocket is vibrating transversely prior to EOG. The

rocket then has angular momentum due to motion about its center of mass.

This angular momentum has a transverse component (see Fig . 3) that is

time varying. It is the resultant of the transverse angular momenta of

infinitely many segments of the rocket (considered as a continuous flexible

body) due to rotation of each segment about its center of mass and of the

angular momenta due to the motion of the segments’ centers of mass relative

to the center of mass of the rocket. 
-

p p...— C
— 

~~~~~~ 
9

__

— - X

— b~
— angul ar momentum

A 
due to spin.

h — angulaj momentum
A ~ about~~ due to transverse

h motion o fC .
— — 5

— I

~ C X
-

~ -
. -

z —

h kt z—

Fig. 3. Angular momentum of a spinning flexible rocket.

The angular momentum of each segment due to rotation about its center

of mass has a transverse component because each element is, in general,

rotating transversely to the line segment which forms a portion of the

~~~~~~~
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centroidal axis of the rocket. It also normally has a component trans-

verse to the launch axis which is due to the fact that angular momentum

resulting from spin is (because the rocket is bending transversely) not

directed along that axis.

If the rocket is slender and is not bent severely, the resultant of

the angular momenta of the rocket segments about their respective centers of

mass is much less than that due to the motion of the segments ’ centers of

mass relative to the rocket ’s center of mass. The latter can be (as will

be seen later) a substantial part of the total angular momentum of the

rocket.

Until EOG, the launcher constrains the rocket in such a manner that the

transverse component of its angular momentum due to transverse (to the launch

axis) motion changes in magnitude and direction. Hence, it is possible that

at EOG there will be little transverse angular momentum. This is, however,

not very probable. Assuming, then, that such a transverse angular momentum

exists at EOG, it will be present immediately after EOG and will generally be at

least partially transverse to the instantaneous principal axis of least

inertia of the vibrating rocket.

Because in free—flight the rotational and vibrational motions of the

rocket are virtually uncoupled (i.e., it behaves somewhat like a free—free

beam), if the principal axis of least inertia of the rocket is rotating

transversely at EOG, it will continue to do so until an external torque

stops it. This rotation is a precession and is periodic if no external

torques are present and there is no energy dissipation. However, the period

of the precession is very long for slender rockets, since it is approximately

equa l to 2~ IT/ (
~
2 I

A
),where 1

T 
is the transverse moment of inertia of the

~~~~~~~~~

‘ 
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rocket, and ~2 is its spin rate and is the rocket ’s axial moment of

inertia. Hence, it appears to be constant near EOG.

An important point is that the transverse rate due to transverse

vibration of the rocket is not created subsequent to EOG as a rate due to

blow—by would be. It is the result of energy being input into the rocket

for a period of time before EOG, perhaps from the time of ignition.

Another important point is that if the transverse vibration is such that the

PALl of the vibrating rocket is not rotating transversely at EOG, then there

is essentially no transverse angular rate of that axis due to the vibration

subsequent to EOG.

Approximate Transverse Angular Rate Due to Vibration

An approximate expression for w.~, the transverse angular rate at EOG

which is the result of transverse vibration, is derived in Appendix C.

There, the two-body physical model and the constraints used in the two—body

mathematical model are used to determine the transverse components of the

angular momentum of the centroidal principal axes of the rocket at EOG in

terms of model physical characteristics and the pitch and yaw rates of the

rocket’s nose at end of guidance, ®NQ and ~No’ 
respectively. Note that in

this model, O
~0 and are due to bend~~g only.

Let B
~ 

and B
2 
be the axial and transverse moments of inertia,

respectively , of Body 2; a = m
1
m
2
/m,where m~ is the mass of Body j and

m m
1

+m
2 ; 

r
1
, 
~
- l’ 

r
2 
and be the axial components of the vectors from

P to C
1
, C

1 
to R, R to C

2 
and C

2 
to Q, respectively, Then,

~ (~5k
1 
- k

1
/k
2
)’~O~0 

+ 
~~O 

~ (1)

where d — [B
2 

+ ar
2

(L
l
+r
2
)_B

l
]/ ( I

T
_I
A

) ,  k
1 

— d/ (L
1
+r
1
) ,  k

2 
d/ (~.2+r2),

_ _ __ _ __ _ _   ~4.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 

~~i-’T - 
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and d = ÷ r
1 

+ £
2 

+ r
2
. We note here that the curves on page 37 of

Ref. 2 are not all correct, since incorrect initial conditions were used to

obtain them. The correct initial conditions are given in Appendix A.

Equation (1) implies that is directly proportional to the transverse

angular rate of the rocket’s nose. Regardless of the transverse angular

rate of the rocket’s nose, w~ will be zero when the factor 5k1 
— k

1
/k
2 
is

zero. This may be the case if either the mass and inertia characteristics

of the two bodies are altered so that ~ — 1/k 2, or the support points of

the rocket are changed . The latter possibility will be considered shortly.

First, we shall see what size transverse angular rate may be expected.

From the physical characteristics of the rocket GEM #7 (see Table 1,

infra) the following values needed to determine the constant factor in

Eq. (1) can be obtained (see Table 2, infra): 3
~ 

029 kg—rn2 , B2— 
11.86 kg—rn2 ,

a 28.37 kg, 1A 
= 0.406 kg—m2, 1

T 
= 

~~~~~~~~~ kg—rn
2, k

1 
1.22 ,and k2 5.64.

The constant factor is approximately 0.32. Bending oscillations of ampli-

tudes up to 0.5 milliradians have been observed by optical lever techniques.

Assuming such an amplitude and a first mode bending frequency of 60 Hz, we

get w.~ 60 mrad/sec, a substantial transverse angular rate.

If we replace the second factor in Eq. (1) with ~~~ where A is the

amplitude of the transverse vibration just prior to EOG and where is

the dominant (probably first—mode) bending frequency, then we can plot

as a function of 2..
2/~ 2

. (Note that 2.2 may be negative; indeed, it

is in the above example!) The curve (see Fig. 4) obtained is virtually a

straight line, which has a zero crossing at 2.2/r2 0.73. Thus)if

2.
2 

= 0.73 r
2 
had been used in the above example, the transverse rate

predicted by Eq. (1) would have been approximately zero. 
t

V .‘“  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ‘
~~~~~~

-“
~~~~~~~~

‘.‘

~~~~

‘ — 
~~~~~~~~~~~~~~~~~ V 
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0.3

0.2-

4

3
0.1-

~5

Fig. 4. Transverse angular rate as a function of forward
support location.

Although Eq. (1) does not include the effects of higher—order bending

modes, it still yields reasonably good estimates of the transverse angular

rate which may occur. It does include the effects of support placement and

the results presented emphasize the importance of choosing the locations

of supports judiciously .

2.4 Results from Mathematical Models

To illustrate the type of post—launch attitude motion which is caused

by transverse vibration prior to EOC, we present here some results obtained

V ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ •.. ~
- -.

~
---.— 

~~~~~~~ 
.— 

~~~ 
-
~~~~ 

— -
~~~~
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using the two—body and assumed modes mathematical models. In addition to

transverse vibrae~on , the effects of thrust misalignment on a flexible 
- 

I

rocket are illustrated.

Two—Body Model Results

Only a few two—body model results are presented, because others have

been given in Ref . 2. ’ The rocket modeled is GEM ?ft7 (see Table 1).

Table 1. Physical Characteristics of GEM #7

Length (rn) 3.353
Radius at aft  end Cm) 0.076
Mass (kg) 114.76
1T (kg~ rn 2) 99.7
I~ (kg—rn2) 0.406

Thrust (Nt )  46720

Frequency of first free—
free bending mode (Hz) ~67

The data used in the two—body model is given in Table 2. Ic should be

poin t ed out tha t this data is suc h that the center of mass of the undeformed

rocket model is located at the hinge point R.

Table 2. Characteristics of Two—Body Model of GEM #7.

~~ 
(kg) 50.466 m

2 
(kg) 64.286 k (Nt—rn)

(m) 0.9376 12 Cm ) —0.3354 F
~ 

(Nt ) 46720
r. Cm) 0 .9376 r2 (m) 0.7393 I~ (k g—rn~ ) 9 9 . 7
Radius (m) 0.095 Radius (m) 0 .095 t~ (kg—rn 2 ) 0.406
A1 (kg—rn 2) 0.1681 

~~ 
(kg—rn 2 ) 0. 17 39 , (tad/sea) 47

A2 (kg—rn 2 ) LO .99 6 
~2 (k g—rn 2 ) 5 .27 4

A.lthcugh the results given in Ref . 2 are not exactly correct due to the error
~~ ini:~al :ond~ tions mentioned previously , the error had ~iery l i t t le af±ac ton the results given there , exc ep t for  chose on page 37.

-I~-_ --
. 

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . :.~~~~~~
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The initial conditions °NO 
= — .25 mrad, = 0 .25 mrad , = 0.364

tad/sec and = 0 were used along with = 47 rad/sec to obtain the time

histories of and V~~ shown In Fig. 5. Both and have the form of a

lightly damped periodic oscillation superimposed on a linear function of time

The slope of the mean value of is essentially zero, while the slope of the

mean value of is about 0.118 tad/sec. Equation (1) can be used to

obtain = 0.117 rad/sec; hence, for the two—body model (on which it is

based), Eq. (1) yields the proper transverse rate.

~ 5 .
S

~ 0.

0. 50 100 150 200
TTh~ (msec)

7.

a

J V ~~~~~~~ I

0 50 100 150 200
TIME (macc)

Fig. 5. Two—body results — effects of bending.

-- 
V_p ~_~~~ .,- ,~~~~-~-w ~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -,-——---.- —‘ ~~~~~~~~ ~~~ — V_ ~ V — •~V~ -- -z..- —



17

If there is no transverse vibration at EOG, but there is thrust

misalignment defined (see Fig. 6) by cL
y 

= 0.677 mrad and = 4.6 mrad,

the time histories shown in Fig. 7 are obtained . The thrust misalignment

causes only a small amount of bending so that the curves look essentially

like those obtained using a rigid—body model for the rocket. The slope

of the mean value of 0N 
is about —80 mrad/sec.

Fig. 6. Thrust misalignment angles.

The combined effects of transverse vibration and thrust misalignment

are illustrated by the curves in Fig. 8. To obtain these curves, the initial

conditions used to generate the results shown in Fig . 5 and the thrust mis—

alignment used to get the curves in Fig. 6 were combined . It is clear

from the curve in Fig. 7 that the transverse rate due to vibration is

more significant than that due to a 4 mrad thrust misalignment. 
V 

Li
- ~~~~~ ‘ ‘~~~“~~~~‘~~~~~~~~~“ 

V 

- V V~~~V~~V_
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I-

11 5a

0 50 100 150 200
TIME (msec)

5.

0 50 100 150 200
TIME (msec)

Fig. 7. Two—body results — effects of thrust misalignment.
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2-

0 50 100 150
TINE (msec)

i—. 6-

0 50 100 150
TINE (msec)

Fig. 8. Two—body results — combined effects.

-
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Assumed—Modes Model Results

At this point we are considering the effects of transverse vibration

regardless of the cause. Hence, for purposes of illustration, a bending

oscillation of the rocket model was induced while it was “on the launcher”

and and ‘
~N 

as functions of time were generated by numerically integrating

the assumed—mode model equations of motion. The data used is given in

Table 3. -

Table 3. Data for Assumed—Modes Model of GEM #7

L (m) 3.353

El (Nt—rn2) 1.652 x 106

~ 26.93, 0 
< x <

a (kg/rn) 
43.49, < x < L

xM
(m) 1.875

x
Q
(m) 2.236

‘A 
(kg—rn2) 0.406

1
T 

(kg—rn 2) 99.7

F
T 
(Nt) 46720 (0.0 < t < 0.25)

T
A 

(Nt—rn) 284.2 (0.0 < t < 0.0647)

y0 
E z

0 0

End of guidance occurred (see Fig. 9) at about 0.0647 seconds, as the

nose of the rocket model was pitching up. The transition from on—the—launcher

motion to free—flight is characterized by (1) a change in the slope of the

mean value of and (2) changes in the amplitude and dominant frequency

of the bending oscillations. Such changes are observable in optical lever

data. The natural frequencies of the first bending mode of the model for

this example are approximately 41 Hz during guidance and 70 Hz during free

flight.

-~~ V V ~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -. - ~
.--—

~~ 
— - .-,.—--

—~~ ~~ 
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a

1 -

—•----—--,-- —,-
~~~~~~~~~~~

I I

0 50 100 150 200 250
TINE (msec)

7

I.’

ci

ci
I.-’

1 -

—l 1

0 50 100 150 200 250
TINE (rnsec)

Fig. 9. Assumed—modes results — effects of bending.

The effect of thrust misalignment is qualitatively the same when the

two—body or assumed—modes model is used. The time histories shown in Fig.

10 were genera ted by using c~ and r values stated above in connection with

the two—body model. The curves shown in Fig. 10 differ from those shown

in Fig. 7, primarily because the assumed—modes model of the rocket had

rotated through approximately 60 degrees at EOG. Hence, the corresponding

two—body thrust misalignment angles are o. 4.32 mrad and

— 1.72 mrad. (The roll angle in the two—body mathematical model is

-~~~~

V ~~~~~~~~~~~~~~~~~~~~ .
~~w - r ~~~~~~~~—~ -

~~~~~~
V -r-~~~~~~~ --- ——- ~~~~~~ —. — — 

~~~~~~~~~~~~~~~~~~~~ •

~~~~~~ V ~~~~~~~~~~~~~~~~



22

zero at BOG.) When the proper thrust misalignment angles are used in the

two—body model and the pitch and yaw angles and rates of the rocket model’s

nose at BOG (as taken from the assumed—modes model results with vibration

present) are used, the results for ‘1
N 
and as functions of time obtained

using the two models agree very well (see Fig. 11). Since the computer

codes used to obtain the results given were developed at different points

in time and are different in many respects, the agreement achieved implies

that both codes are correct.

• 

!zi~~ 

• I . II

o so ioo 150 200 250
TIME (wsec)

o 50 100 150 200 250
TIME (meec)

Fig. 10. Assumed—modes results — effects of thrust misalignment.

_ _ _ _   
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5 Assumed—modes —

Two—body —

0 .
.5 -‘

I..,
B

r~ ~~~~~~~~

ci

~~

~~ — 10 .

—15 .

— 2O ~~ I I

0 50 100 150 200 250
TIME (rnsec)

Assumed—modes

Two—bod y -

2 -

~~~

I~ t~ /
— 6 .  I

0 50 100 150 200 250
TIME (msec)

Fig . 11. Assumed—modes and two—bod y results — comb ined effects .
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The rates at which and 
~N 

are changing at EOG determine, according

to Eq. (1), the transverse angular rate of the rocket after EOG which is

due to bending. To see if this is true for the assumed—modes model, the

guidance length was changed so that BOG occurred at times when was

negative, essentially zero, and positive. The results for ON
(t) are shown

in Fig. 12. They are in agreement with the two—body model results.

16 Curve No. Guidance Length (m)

1 0.6462
2 0.7848 1

3 0.9242

_  8~.5

a

ciz 2
< 0 -
ci
I-s
5-.

—8 -

3

—16 .

0 50 100 150 200 250
TINE (maca)

Fig. 12. Assumed—modes results — effects of bending with
different  guidance lengths .

A constant factor analogous to that in Eq. (1) can be obtained from

assumed—modes model results by measuring the mean slopes of the ®N
(t) and

curves af ter  EOG and using the values of and at EOG. For this

model of GEM #7 , we get the factor 0.33 which is in close agreement with

the two—body value of 0.32.

—
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As a final illustrative result, we offer Fig. 13, which depicts the

pitch and yaw angles of a flexible spinning rocket represented using the

assumed—modes model . This plo t of VS.  can be considered as “simu-

lated” optical lever data. To obtain this result, we used the data in

Table 3, forced to be —l rnrad and to be —120 mrad/sec at t 0 , by

picking the proper first mode generalized coordinate q1 and the proper

value of the time rate of change p1 (see Appendix B for details). We also

set ny 
= —0.5 mrad and 1 mrad. Although at this point no attempt was

made to match any actual data, the “simulated” data is in some ways quali-

tatively similar to that actually obtained during the flight of GEM #8

(see Fig. 14). However, the complexity of the actual optical lever data

shows bending modes other than the first were excited.

5.

.5

Id
B

10 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
.

,
YAW ANGLE (mrad )

. 4

Fig. 13. Assumed—modes results — “simulated” optical lever data.
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• IGNITI ON

22 -

21

20=

~ 19-
5-.

18—

17-. —
I I I

—5 —4 —3 —2 —1 0 V
YAW ANGLE (mrad)

Fig . 14. Optical lever data (reduced) for GEM #8.
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SECTION 3. ANALYSIS OF OPTICAL LEVER DATA

3.1 Introduction

The optical lever is the most accurate, commonly=used means of

obtaining attitude time histories of free—flight rockets. Optical lever

data is usually acquired during the guidance phase and a short portion of

the free—flight phase. Through appropriate processing, the raw data is

converted into pitch and yaw angles of the rocket ’s nose as functions of

time. If the rocket is not vibrating transversely during the data

acquisition time, the pitch and yaw angles of the rocket’s nose are, of

course, those of the rocket. However, if it is vibrating transversely ,

this is clearly not so. In fact, if the rocket is vibrating transversely,

there arises the question of what coordinate frame should be used in

specifying the “attitude of the rocket.”

The coordinate frames most commonly used in specifying the attitude

of an unconstrained flexible body are: (1) a coordinate frame rigidly

fixed in an essentially rigid portion of the body , (2) principal axes of

the deformed body,and (3) so—called “mean axes” which are such that the

angular momentum with respect to the mean axes due to vibration is zero

at all times . As mentioned previously , principal axes of the deformed

rocket are used in the assumed—modes mathematical model during the free—

f light phase.

If the transverse vibrations are assumed to have no effect on the

rocket’s gross attitude motion subsequent to EOG, the data can be analyzed

by assuming that the variation in the at t i tude of the rocket is due to:

27
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(1) an initial transverse angular velocity due to unspecified factors,

(2) the action of a body—fixed torque due to thrust misalignment,

(3) dynamic imbalance of the rocket, and (4) space—fixed torques arising

from, f or example, blow—by and gravity (if a tip—off launcher is used).

If the dynamic imbalance of a rocket which is spinning at a constant rate

is also constant, it produces variations in rocket attitude which are of

the same form as those produced by an “equivalent” constant body—fixed

torque. Thus, if a constant spin rate model is used in the analysis

process, constant dynamic imbalance and constant thrust misalignment

effects are not distinguishable. Furthermore, since the torque due to

blow—by acts approximately impulsively , it is difficult to distinguish its

effects from those of the otherwise present initial angular velocity. For

these reasons, in the analysis presented here, only the effects of initial

transverse angular velocity due to unspecified factors and thrust mis-

alignment are considered when the effects of transverse vibrations are

ignored. When the effects of transverse vibration are not ignored, the

initial (at EOG) angular velocity due to it and possibly an additional

initial angular velocity due to other factors (launcher vibration , for

example) as well as thrust misalignment is considered. The effects of

blow—by are not considered because pressure data” taken during the guidance

phase of the rocket of interest indicated blow—by was not significant.

3.2 Transverse Vibration Effects Ignored

If the rocket is modeled as a rigid body , which is spinning at a

constant rate and is acted upon by a constant body—fixed torque due to

a constant magnitude thrust , FT, that is not aligned with the longitudinal

axis (z—axis) of the rocket, Euler ’s equations and Poisson’s kinematic

- - _~_ -• -_~~ - V ‘ç-w—~ ~~~~~~~~~~~~~~ ,~ I w _ r c~~~~~~~~~~~~ -~~~~~~7’~~ ~
•
~~~~~
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~
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equatio ns can be solved to obtain closed—form solutions for the yaw,

pitch and roll angles of its centroidal principal reference frame.

Furthermore, if the rocket is slender, so that tA 
<< and the pitch

and yaw angles are small, the solutions for and ~~~~ can be well approx-

imated for a short period of time (say one—half a second) by the expres—

sions given on Fig. 15. In Fig. 15, a. and a. are “pitch” and “yaw” angles

of the thrust vector with respect to the rocket’s x—axis. Also, S~yQ and

~z0 
are the initial transverse angular velocity components. The curves in

Fig. 16 are typical ones. Certain geometric characteristics of the curves

are defined in Fig. 15. These are expressed analytically in terms of

I , I , a. , a. , F and ~ , the distance from the intersectionx yO zO T A y z T C

of 
~T 

with the x—axis and the rocket’s center of mass. By labeling plots

of and 
~
‘N 

versus time obtained from optical lever data as shown in

Fig. 15, if ~2 , F , , I and I are known, a. , a. , ~ and ~ can bex T c T A y z yO zO
obtained graphically .

To give an example of this “graphical analysis,” we use optical

lever based data for GEM #8. The physical characteristics of GEM #8 are

given in Table 4. From the appropriately labeled curves, we get:

8 —18 mrad/sec, ~ 0.945 mrad, 8 20 mrad/sec, ~ 2.41 mrad,y y z Z

and A 2.6 mrad.

For GE~-1 #8, 1T ~~~ kg—rn2 , 1A 
0.421 kg—tn2 , L 1.874 m,

~ 30 rad/sect and FT 40940 Nt. Hence, K 0.8642. It follows from

the definitions of 8 , , 8 and ~ that ~ —90 mrad/sec ,y y 2 2 YO
48.5 inrad/sec, a. 1.104 mrad and a. 2.79 mrad.zO y z

‘ This is an average value of ~~ since GEM #8 was spun via an eroding spin
turbine. It is actually lower than a simple average, because the nutational
frequency does not instantaneously become 
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Fig. 15. Pitch and yaw angles when thrust misalignment is present. 
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Table 4. Physical Characteristics of GEM #8

Length (m) 3.353

Radius at af t  end (m) 0 .076

Mass (kg) 114.5

1T (kg—rn
2) 99.5

1A 
(kg—rn2) 0.421

Thrust (Nt) 40940

Frequelicy of first free— 67free bending mode

Spin rate at EOG (rad/sec) 30

Distance from aft end to 1 874initial center of mass (in)

V 
31
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Fig. 16. Comparison of theoretical results and data — bending
effects ignored .
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If the above values of Q , , a. and a. are substituted into theyO zO y z

expressions for and ‘11N shown in Fig. 15, the solid curves in Fig. 16

are obtained. The dashed curves in Fig. 16 are those derived from optical

lever data. Very close agreement between the theoretical and experi—

mental curves is apparent as far as the “mean” values of °N and are

concerned, even though the model is one with constant spin rate.

The magnitudes of the values of 
~
2yO and required to obtain the

“match” illustrated in Fig. 16 are very large. Since blow—by did not

appear to be a significant causative factor in the case of GEM #8, the

cause of these large magnitude initial angular velocity components must

be found elsewhere. In the next subsection, we show that it is very

probable that one cause was transverse vibration during guidance.

3.3 Transverse Vibration Effects Included

To include the effects of transverse vibration in the analysis of

optical lever data , we use the two—body mathematical model. Two approaches

are taken. In the first we : (1) graphically obtain 0N0’ 
~
‘NO’ °NO and ‘~NO

estimates from the curves derived from optical lever data, (2) use

and 
~NO 

in Eqs. (C—7) (see Appendix C) to get w~~ and due to the

vibration and (3) add to and initial angular velocity components

due to “other ” factors to obtain the c2~Q and 
~zO found in subsection 3.2.

The second approach is to fit the optical lever derived curves with the

two—body model solution in a least—squares sense. 
V

Taking the f irst  approach , we first find 0.25 mrad , 
~NO 0.0

mrad , °NO —220 mrad/sec and 
~NO~ 

140 mrad/sec. For the GEM #8 two—

body model B
1~ 

0.194 kg—m 2, B
2 

5.088 kg—rn2, m
1 

50.51 kg and

m2 
64.35 kg. Hence, a 28.22 kg and the constant factor (6k

1—k1
/k
2
)

..x _ -  V_~_~ — - —

-V
~

— 

-



35

0.2733. From Eqs. (C—7), w~~ —60 mrad/sec and 38 inrad/sec due to

transverse vibration. The total transverse rate due to bending is ,

therefore, approximately 70 rnrad/sec.

Care must be exercised to maintain consistency when using the graph-

ical method. Note that A = Vi~
2 + L~.2 ; so,the values of t~ and ~ and Ay z y z

must be consistent. Also, the equation ,y = tan 1(L~~/~ 5), must be approx-

imately satisfied by the measured value of y. Attaining such consistency

generally requires several attempts at drawing the enclosing lines and

centerlines of the oscillations.

It is obviously no small problem to determine exactly what ®No’ ~No’

0
N0 

and 
~NO are from the optical lever data. Again, the theoretical

results must be consistent in that the amplitudes of the bending oscillations

in the theoretical results must match well with those in the optical lever

data. The results shown in Fig. 17 (see page 33) do, in fact, agree well.

The second approach involves considerably more labor than the graph-

ical approach,unless the optical lever data is available in a form suitable

for input into a digital computer. It is a standard least—squares procedure

in which influence functions obtained from the two—body model computer code

are used. The influence functions are found by setting all but one of

the initial conditions and thrust misalignment angles successively to zero.

The nonzero quantity is set equal to the same constant in each case. We

used the values of 1 mrad for angles and 1 rnrad/sec for rates to obtain the

influence functions used to get the results which follow in this section.

To put the method in mathematical terms, we let ~ be a nxl matrix

of angles extracted from optical lever data . We also let ~ — 

~
0No °NO ~NO

‘
~NO ~~ ct~ ) and A denote a nx6 matrix of influence coefficients, i.e.,

...— —
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values of the influence functions evaluated at times after EOG corre-

sponding to the data points. Then, if the two—body model were assumed

to give exact results , we would have

X A X .  (2)

Since the two—body model cannot be reasonably expected to give exact

results and since we would like to use more than six pieces of data,

we let the error involved be

E = y - A x .  (3)

We then choose , as our “answer” for x, the vector (6x1 matrix) i~,

such that £
T

E is minimized when i~ is substituted for x in Eq. (3).

The vector ~ is given by the equation,

= (A~ bY ’ 
~~ 

. (4)

By using 25 values of ‘E
N’ 

22 values of °N 
and the appropriate

influence coefficients from the two—body model computer code (in which

is set equal to 30 rad/sec) in Eq. (4), the following values may be

obtained : °No 
= 0.8722 nirad, °NO —387 mrad/sec, ‘11

N0 
= 0.1947 mrad,

~NO 
= 128.5 mrad/sec, & = 0.685 mrad, = 3.214 inrad . These estimates

are in reasonably close agreement with those obtained using the graphical

procedure . One difference is that in obtaining the former we ha~ie not

considered causes of transverse angular rates at EOG other than trans-

verse bending. It turns out that if one attempts to solve for transverse

angular velocity components due to “other ” factors , the matrix b
TA cannot

be inverted.

When the estimates given immediately above are substituted into the

two—body model computer code , the results shown as solid lines in Fig. 18

V - - ~~~~~ ‘r~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~ 
— •VVV~ __•~ V 
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are obtained. Good agreement between the theoretical results and experi-

mental data is apparent. However, the bending oscillations in are

too small and those in are too large. This is no doubt due to the

presence of transverse angular velocity components at EOG due to factors

other than transverse bending.

If we “adjust” the estimates to account for the transverse angular

velocity components due to “other” factors, we get the solid curves in

Fig. 19. The “adjusted” values are = 0.8722 nirad, °NO 
— —208 inrad/

sec, 0N = 0.1947 mrad and 
~NO 

= 166 mrad/sec. In addition, transverse

angular rates of —49 inrad/sec and 10 mrad/sec in pitch and yaw, respec—

tively , are required . The “fit” is very good. It follows that the least—

squares method combined with a little “engineering judgment,” perhaps

influenced by graphical analysis results will provide useful information

concerning the effec€s of transverse vibrations and “other factors” which

produce transverse angular rates at EOG.
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SECTION 4. PROBABLE CAUSES OF TRANSVERSE VIBRATION

4.1 Introduction

It is clear from the results given in the previous sections that if

transverse vibration of a free—flight rocket is occurring at EOG there

will generally be an associated transverse angular rate . The exact cause ,

or causes, of the bending evidenced in GEM series flight test data has

not been determined during the current research e f for t .  However , several

“probable” causes have been identified and studied by the authors and/or

by U.S. Army Missile Laboratory personnel or U.S. Army contractors.

Soon after the search for causes of transverse bending began, it was

discovered that some of the GEM series rockets were supported during

portions of their guidance phases at three longitudinal points rather than

two points . Hence, it is probable that this “ intermittent” third support

caused bending of the rocket.

A second cause of bending was suggested by Golden.5 As the rocket

begins to spin within the tube, transverse frictional forces act at support

points. These forces may alternate in direction and hence cause bending.

A third cause of bending has been studied briefly by Smith.6 If the

thickness of the rocket motor case is not uniform circumferentlally , the

pressurization of the motor case during ignition of the rocket motor, and

the axial forces on the rocket as it travels on the launcher will generally

cause the rocket motor case to bend. Since the axial forces which act

during detent and guidance are not constant, it is reasonable to believe

that transverse vibration of the rocket with an eccentric motor case will

occur.

40
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In the following subsections , we t reat the f i r s t  two of the causes

discussed above. We first consider the effects of “multiple” (more than

two) supports.

4.2 Multiple Supports

The computer code which contains the assumed—modes mathematical model

was modified so that three points of support could be modeled. This was

done by f’ rcing, mathematically , a point x
3 
on the centerline of the rocket

to follow a prescribed path for a prescribed amount of the total guidance

length. The path chosen was a ramp. That is, the rocket travels within

the launch tube for a certain distance. Then, the point x3 
on the center-

line of the rocket is forced to follow a straight—line path which is not

collinear with the launch axis, I.e., the ramp. After the rocket travels a

certain additional distance within the launch tube, the “third support”

ceases to support the rocket; however, the other two supports are still

present until EOG. Hence, the rocket is forced to bend and is then released

(partially). The resulting transverse vibration of the rocket model exists

until-and subsequent to EOG.

Only typical results are presented here to illustrate the possible

effects of more than two longitudinal support locations. The curves in

Fig. 20 were obtained using the data given in Table 3. The sequence of

events is as follows. The point x~ corresponding to the head end of the

motor case of GEM #7 is forced to move vertically down 0.0254 cm during

0.1524 in of travel in the x
L
—direction. The “third support” which caused

the displacement of is then removed. The induced deflection of the rocket

model’s nose is about 0.8 mrad when the third support is removed. The

rocket model then begins to vibrate and a transverse rate of about 61

mrad/sec is present at EOG. Hence, a small displacement of x.~ during

guidance is sufficient to produce a large transverse rate at EOG.

______________________________________ 
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4.3 Flexible Supports and Friction

The two—body model of a spinning flexible rocket was extended by

constraining the two bodies elastically during the guidance phase and

adding a model for the friction between the rocket and the flexible

supporting tube. The extended model is described in Appendix D. A

computer code was written to solve the equations of motion numerically.

Numerical solution is necessary because of the time—varying, nonlinear

character of the equations of motion. By using the computer code, one may

study the effects of: (1) flexibility of the supports (tube and shoe flex-

ibility), (2) friction between the shoes and the tube wall, (3) clearance,

or “dead space,” between the shoes and wall, (4) forward support location,

(5) spin torque magnitude and (6) tipoff. Only the first four of the above

will be discussed in what follows.

Flexibility of the Supports

If frictionless motion is assumed, the time histories OI,~ 
and ‘P

M 
shown in

Fig. 21 are obtained using the physical parameters for GEM #8 and the

support stiffness = K
Q 

= 8.76 x ~~ Nt/rn. There is an initial deflection

of the rocket’s nose due to gravity, but until EOG little change in this

deflection occurs. At EOG, a mean transverse ratet of only 0.67 rnrad/sec

is present. Variations in the support stiffness produce essentially no

difference in the mean transverse rate at EOG.

Friction

When non—zero coefficients of friction, ii
~, 

and are introduced into

the equations of motion, the rocket generally begins to “whirl” as the spin V
rate increases and the frictional forces cause transverse vibration. This

Here , “mean Lransverse rate” is the square root of the sutn,of the squares
of the mean values (bending oscillations not included) of and

— —---- —V.- — ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~
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motion is unstable; i.e., the bending oscillations increase in amplitude

as time progresses. Fig. 22 shows the time histories of and ‘PM

obtained using the above stated values of parameters and friction coef—

icients = = 0.05. The mean transverse rate at EOG is greater than

with no friction,but is still less than 0.8 mrad/sec.

The mean transverse rate is much larger for the case of U~, 
= 1J Q 0.1

(see Fig. 23). Its value is about 240 mrad/sec . Larger values of l-i~, and

thus produce more bending and larger mean transverse angular rates. In

fact, u~ and = 0.2 produce divergent motion to the extent that the small

angle assumption is violated for 02 and 03 
after only 0.05 seconds.

When friction is present, the stiffnesses of the supports become

much more important. For 5 = K
Q 

= 4.38 x l0~ Nt/in and 
= i

~
i
~ 

= 0.05, the

mean transverse rate, as stated above, is only about 0.8 mrad/sec; whereas,

for = K = l.7L x108 Nt/in and the same and values, it is approxi-

mately 2 mrad/sec. This larger rate is probably generated because the

“violence” with which the rocket is forced to and fro in the tube when the

tube is very stiff causes more bending.

Clearance

If the tube is large enough that all the shoes (four assumed) at each

support location are not all in contact with it initially , there will be

periods of time during guidance in which the rocket is not supported at

one, or both , of the support locations. The distance through which a point

on a centerline of the rocket,at a support point and originally on the

centerline of the tube,must move for a shoe to contact the tube wall is

denoted by c. In the work we have done, ~ has been assumed to be the same

at the fore and aft support points.

.
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We have found that a nonzero c, say 0.31 ma, with no friction, will

result in a slightly greater mean transverse rate at EOG than would other-

wise be present.

An example of the attitude motion of the rocket’s nose that occurs

when 5 = K
Q 

= 8.76 x l0~ Nt/m, ]t~, and UQ = 0.05 and ~ 0.31 m n  is shown

in Fig. 24. The irregularity of the time histories of and during the

guidance phase is due to the clearance. During certain intervals of time,

the rocket is actually in free—flight within the tube.

Forward Support Location

If the forward support is moved from its nominal = —0 .335 in)

location on the rocket, the equilibrium pitch angle of the nose changes.

For the two—body model, if the support is moved so that 
~2 

= 0.54 in (the

value found in Section 2 which makes the constant factor of Eq. (1) zero, then

the equilibrium pitch angle of the rocket’s nose is about 0.24 mrad. For

0.54 in, 5 K~ = 8.76 x l0~ Nt/rn, lip li~ 0.05, ~ = 0 mini , and

all other values of parameters the nominal ones, we get the result shown

in Fig. 25. The mean transverse rate is not zero, but is approximately

12 rnrad/sec. It is not zero because the support points P and Q are moving

at EOG in such a way that there is a transverse angular rate of the rocket’s

principal axes in addition to the rate produced by transverse vibrations.

Hence, the suggested method for reducing the adverse effects of transverse

vibration, i.e., placing the supports properly , does not necessarily pro-

duce zero transverse angular rate when other factors, such as tube flex-

ibility, are present.

Combined Effec ts

As a final example of the effects of friction clearance and support

location , we offer Fig. 26. The results shown in Fig. 26 were obtained
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using 
~2 

= 0.54 in, 5 = K~ = 8.76 x io~ Nt/in, = = 0.05, ~ = 0.31 mm

and the thrust misalignment angles = = 1 mrad . In this case, the

transverse rate is less than that which would be present if only thrust

misalignment existed .

The qualitative similarity between the pitch and yaw time histories

shown in Fig. 26 during the guidance phase and the optical lever results

shown in Figs. 16, 17, 18 or 19 should be noted. This is encouraging , as

it indicates that a mathematical model which includes the flexibilities

of the rocket and its supporting Structure, clearance, friction, thrust

misalignment, dynamic imbalance and possibly only a few more characteris-

tics could be used successfully in analyses of free—flight rocket motion

during both the guidance and free—flight phases.

Comments on Angular Momentum

That the transverse component of angular momentum may represent a sub—

stantial portion of H, the total angular momentum of a flexible rocket about

its center of mass at EOG was verified by using the extended two—body model.

The Body 1—fixed (Cxyz frame) and space—fixed components of H were computed

along with the rocket’s state. The transverse component of H at EOG was

found , for example, to be 0.633 H I for the combined effects case.

The space—fixed angular momentum components also served as checks on

the numerical integration procedure. If there are no external torques

subsequent to EOG, they should remain constant. Constancy to four signif—

icant figures was, in fact, achieved.
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SECTION 5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

On the basis of results of this investigation we have reached the

following conclusions:

1. The two—body model and assumed—modes model computer codes
are correct as far as programming is concerned.

2. The assumed—modes computer code allows one to model a
flexible free—flight rocket in more detail than is possible
with the two—body computer code. The changes in amplitudes
and frequencies of transverse vibrations obtained using the
assumed—modes code are qualitatively the same as those which
are often observed in optical lever data.

3. The graphical method presented is useful in getting order
of magnitude information.

4. The two—body model is a valid representation of a spinning,
flexible free-flight rocket to the extent that it can be
used to analyze optical lever data which contain evidence
of transverse vibration .

5. The methods for analyzing optical lever data which are
given in the body of this report provide useful information
concerning the effects of transverse vibrations. They also
can be used to detect the presence of “other” factors which
cause transverse angular rates of free—flight rockets at
EOG.

6. Transverse vibration of a spinning flexible free—flight
rocket during the guidance phase can result in transverse
angular rates of the rocket as a whole at EOG. These rates
are of the same magnitude as those caused by several milli—
radians angular thrust misalignment , generally being on the
order of 10 to 100 mrad/sec.

7. The transverse angular rate due to bending vibrations can
be reduced by placement of the rocket suppor ts in such a
way that rotational motion of the time—varying centroidal
principal axes of the rocket is reduced.

8. A probable cause of transverse bending of some of the GEM
series rockets was the use of an “intermittent” third support.
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9. Coulomb friction acting axially and circumferentially on
a spinning, flexible rocket at its points, or areas, of
support may cause considerable transverse bending, the
magnitude of which depends on the coefficient of friction,
clearance and other factors. Friction is another probable
cause of bending vibrations of the GEM series rockets.

10. If the points of support of a spinning , flexible rocket are
not constrained to translate in a fixed direction during
guidance, then, although the transverse rate. due to bending
vibrations may be reduced by choosing the support points
properly, the transverse angular rate of the rocket’s
principal axes may still be large due to the transverse
motions of the support points.

11. Additional work is needed to provide a complete understand-
ing of the causes and effects of transverse vibration of
spinning, flexible rockets supported and guided by flexible
launchers. The results presented herein should provide a
basis for such work.

Conclusions 1 and 2 are based on the results of comparisons of the

two—body and assumed modes computer codes. Conclusion 3 is an obvious

result of the successful use of the graphical method in analyzing GEM #8

data in Section 3. Conclusion 4 is reached in light of the success

achieved in Ref s. 2 and 3 and herein in “fitting” optical lever data with

the two—body results. There is still some question about uniqueness of

the parameter set needed to “fit” the data.

The analysis presented in Section 3 justifies Conclusion 5. From

results given in Sections 2 and 3 , it is apparen t that transverse vibra-

tion during guidance is a significant cause of transverse angular rates

subsequent to EOG, as concluded in 6 , above. Results given herein also

indicate that if the rotational motion of the time—varying centroidal

principal axes of a flexible rocket is due only to bending of the rocket,

such rotation can be reduced (Conclusion 7). Conclusions 8, 9 and 10

follow from the results of Section 4.
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Although it is felt that considerable progress has been made since

the work reported in Ref. 2 was begun, the problem of determining the

motion of a general, flexible free—flight rocket while it is being sup-

ported and guided by a general flexible launcher has obviously not been

solved. A complete solution is apparently not attainable. However, as

Conclusion 11 indicates, much more can and needs to be done. We consider

this next.

5.2 Recommendations

Several problem areas should be more carefully explored in the near

future. These are considered in the following recommendations.

1. Additional work is recommended with the goal of developing a
more accurate and efficient method for correlating theoret-
ical and experimental results for spinning ,flexible free—
flight rocket motion. More general mathematical models for
both the launcher and rocket should be developed so that the
simultaneous effects of launcher motion, launcher flexibility
and aerodynamic effects (including blow—by) can be studied.
Such models coupled with a statistical parameter estimation
algorithm would be very useful in analyzing test results.

2. Although it is now agreed by many that transverse vibration
of a free—flight rocket during guidance does generally
produce a transverse angular rate of the rocket as a whole
(gross motion) subsequent to EOG, the experimental confir-
mation of this phenomenon is currently based on optical lever
data acquired without a priori consideration of transverse
bending as a possible error source. It is recommended that
a test program be conducted to verify that transverse bending
vibrations are as significant as theoretically predicted and
to determine how well the current theories predict their effects.
Such a test program would necessarily involve (1) tests to
determine the effects of transverse vibration and (2) tests to
determine its major causes. The former could be conducted with
small reusable experimental rocket models which are propelled
by cold gas, or spring mechanisms, and which are caused to
vibrate in prescribed fashions. The latter could be conducted
with similar experimental rocket models and a launcher for
which friction and support stiffness could be controlled.
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APPENDIX A

TWO—BODY MATHEMATICAL MODEL FOR FREE FLIGHT

Introduction

The mathematical model developed on the basis of the two—body

physical model described in Ref. 2 and in the body of this report is

given here for the convenience of the reader and also for the purpose of

correcting some errors which appear in Ref. 2-. The derivation of Ref. 2

should be consulted regarding the nonlinear equations of motion, since

only the linearized versions are given here.

Equations of Motion

The linearized version of the equations which govern the rotational

motion of the system of two bodies can be expressed in the form of four

first—order, scalar,- ordinary differential equations and a first—order

matrix equation. The scalar equations are

c2 = T / I  , (A—la)1 s A

~ 
~l

’ (A—lb)

= 

~2 S~ + c~ (A— lc)

and

0 = 
~2 cc~ — 5~ , (A—ld)

where the 
~~~~

, j 1 ,2 ,3, are the x
1—
,j
1
— and z

1
—compoaents, respectively , of 

-

the angular velocity of Body 1 (the “aft” bod y ) ,  T5 is the spin torque;

is the moment of inertia of the undeformed system of two bodies about

the x1
—axis; ~ is the roll angle of Body 1; ~‘ and e are the yaw and pitch

angles of Body 1.
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The matrix equation can be written as follows :

I x = B x + T  , (A—2)

where

= 

~~~~ ~~~ 
w

2 
W

3 
e2 03)T; (A—3)

I is a 6x6 matrix with non—zero elements ,

Ill 
= A

2 
+ B

2 
+ a(i

1+r 2 ) 2 , (A— 4a)

1
13 

= B2 + a r 2 (i
1+r2 ) ,  (A— 4b)

1
22 

= Ill s (A—4c)

133 
= 144 

= B
2 + ar 2

2 , (A— 4d)

142 1
24 

= 1
31 

I13~ (A—4e)

and

155 = = 1. (A—4f)

B is a 6x6 matrix with non—zero elements,

B12 
= 
~41

[A
2 

+ B2 + ~ (It
1
+r

2
)2 — A

1
B
1
] , (A—Sa)

B
14 

= ~1[2B 2 
— B

1 
+ 2 a r

2
(2~1

+r
2
)], (A—Sb )

B15 ~
1r2FT + ~1

2 [B 2—B 1 + ar2 (L
1+r2 ) 1 , (A—Se )

B16 ~1
[B
2
—B
1 + ar

2
(2.1+r

2
) ]  , (A—Sd)

B21 
— 

~l2 ’ (A—5e)

B23 B14, (A—Sf)

B25 B
16

, (A—5g )

-V.-.- - — 
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B26 B
15

, (A— 5h)

B32 
= Q

1
[B
2
—B
1 
+ Qr

2
(~1

+r
2

)]  , (A—5i) -

B33 
= —c , (A— 5j)

B34 = c21[2 B
2
—B
1 
÷ 2ar

2
2], (A—5k)

B35 
= 
~
ir
2
F
T 
+ ~~

2I B B  + Or
2
2] -k (A-51)

and
B36 

= ~21[B 2—B 1 + Or 2
2 ] ; (A—5m)

T is the 6xl matrix ,

T = (—ci F
T ~c Z T C  ~ ~ ~ 

~)T (A—6)

In the above Eq. (A—3), and are, respectively, the y2
— and

z2
—eomponents of the angular velocity of Body 2 relative to Body 1 and

0
2 
and 0

3 
are the transverse angles of rotation of Body 2 relative

to Body 1. Also , in Eqs . (A—4) and (A— 5), A1 and A2 are , respectively , the

axial and transverse centroidal moments of inertia of Body 1, while B
1 
and

B2 
are those for Body 2. Furthermore, with m

1 
and m

2 
denoting the masses

of Bodies 1 and 2, respectively, a = m
1
m
2
/M where M = m

1
+m

2
. Additionally,

is the distance from the center of mass of Body 1 to the “hinge point”

between the bodies, and r2 is the distance from the hinge point to the center

of mass of Body 2. Finally, c and k are the inter—body damping and stiffness

constants.

In Eq. (A—6), c~ and are thrust misalignment angles; FT is the

thrust magnitude and [m1r1 +( 9.1+r1+r2 )m 2 ]/M , where r1 is the distance

from the aft end of Body 1 to its center or mass.

___________________ 
________________________________ ______________________________ V. 
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Constant Spin Rate Solution

When the spin torque T = 0, is constant. In this case, if F
T 
is

also a known function of time, a closed—form solution to Eqs. (A—l) and

(A—2) can be obtained. Since F
T 
is fairly constant ~mmcdiately

after “end of guidance” (EOG), it is assumed to be constant herein, there-

by simplifying the process of obtaining a particular solution to Eq. (A—2).

In the case of constant spin rate, B is constant. Hence, the matrix,

A = , (A—7)

is also constant and Eq. (A—2) can be written as

(A— 8)

where -t

A particular solution to Eq. (A—8)(t is constant) is

= — K ’t , (A—9a)

or

x = B ’T . (A—9b )
—p —

The complete general solution to Eq. (A—8) consists of and the solution

to the homogeneous equation ,

= 

~hO (A—b )

By using the eigenvalues and elgenvectors of A, which for our purposes

appear as complex conjugate pairs (three of them), the solution x.~ can be

expressed as

x. = E D E ’ x , (A—li)
—n = —hO

where E is a 6x6 matrix the columns of which are alternately the real and

imaginary parts of the eigenvectors corresponding to the eigenvalues of

-‘V. - 
~r—~ ~~~~~

-.- 

~~~~~~~~~~
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with positive imaginary parts. Also, if n . and denote the real and

imaginary parts respectively of an eigenvalue which has a positive

imaginary part,

D 0 0=11 = =

~22 2 , (A—12)

2 ~~
where

n -r n.T
e~~~ cos w .t e 3 sin w .T

3

~~j j  
= 

n r n •-t 
(j1 ,2,3) . (A~l3)

—e sin w~~T e con W~~T

The solutions for the first two elements of x; i .e.,  x~ , j l ,2 , can

be written out explicitly and substituted into Eqs. (be) and (ld) to obtain

[e] 

= 
[con 

p~ r —sin PI

T] [A

Il
_B

i]

sin p~ t COS p
1
-r A .2 +B~

+ 
~ 

cos q1T —sin q~ T A~1+B12 
e
f
h
t 

+ [cos
~ _sin~

][x
lP]

sin q~ t cos q~ T A12—B
11 sine cos~

(A— 14)

where ~ = c~1
r, T t— t ,p

1~~~ 1 
— 

~~~~~~~ 

q
1 ~ 

+ and If E
jk 

is the (j,k)

element of E and C Is the jth element of C E 1x ,= j —

= E~,21_~ 
C
21_1 

+ E~~2~ 
C21 (A—15a)

V - - -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—fl—. - T~ ± T ~~~~~ ~~~~~~ 
-
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and

B1~ Ej , 2i_i C21 
— E~~2~ 

C
2~_ 1 • (A—l5b )

Equation (A—14) can be integrated . The result is

0 
f l T  

A
11
-B
12 

GO
1 e 

P(T) +
i=1 n .+p

1 A
12

+B
11 ~

11
0

fl T A~1
+B
12 

sine (cos~—l)

1 e~~ 2(T) +2 1=1 n2+q~
A~2

—B 11 (l—eos~ ) sine

(A—l 6)

where
n (cP~T —1 ) + p1Sp~ T — [n ~ sp1r — p1 (c~~t—l)]

p(T) = . (A 17)
ri1 s~ 1

-r—~~~(c~ 1r—l ) n~ (c~~ t — 1) + p
1sp

1
T

and Q(T) has the same form as P(T) , but in ~(r) the q1 take the place of

The pitch and yaw angles of the rocket’s nose, 0N and ~N ’ respectively,

are given ,in the linear approximation,by

0 cost —sine 02
— + • (A—18)

sin’~ cos~ 03

Initial Conditions

The initial conditions on the ~~ j l ,2,...,6, and/or CE) and ‘F are

obtained by assuming that the rocket is, at EOG, supported at two points

P and Q which do not move transversely. This constraint and the assumption

of small angles lead to the following initial conditions:

-

~~~~~~~~~~~~~~~
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x10 
= — [(1

2+r
2

) / ( 2
1
+r
l)]ONO , (A—19a)

= _ [(L
2
+r
2)/ (L

l
+rl)]

~
1
NO (A—l9b)

x30 
= [(d/(2.b+r

l
) ] [

~NO + ~l’FNO l , (A—l9c)

x40 
= [(d/(L l+rl)][’1INO — 

~1°NO 1 ‘ (A—19d)

x50 [d/(
~1

+r
i
)]e

~0 
, (A—19e)

x60 
— [ d / ( 2 .1+r1)]~~0 , (A—l9f)

Go 
= — [(~.2

+r
2

)/d ] x
50 (A—19g)

and

‘F0 — ((~.2+r2
)/ d]  x

60 (A—19h)

where d~~~~1 + r
1
+~~2

+r
2
.
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APPEND IX B

ASSUMED-MODES MATHEMATICAL MODEL

Introduction

The mathematical model, developed on the basis of the “continuous”

physical model and referred to as the “assumed—mode” model because of the

use of assumed mode shapes to model the rocket bending, is given here for

the sake of completeness. For additional details, the reader is referred

to Refs. 2 and 3.

Actually, two mathematical models of a flexible rocket, one for on—

launcher motion and a second for off—launcher motion, are needed. For

this reason, two sets of equations of motion as well as the transformation

relating the two are given here.

Equations for On—Launcher Motion

When the rocket is on the launcher , i .e. ,  during the detent and

guidance phases, pinned—pinned—free mode shapes, ~P~ (x)~ j l ,2,3, are used

to approximate its bent shape by assuming that the y— and z—displacements

(rotating with the rocket) of the rocket centerline are

y = fl + y0
(x) 

(B—la)

and
z ~ + z

0
(x), 

(B—lb)

where
3 3

n — p (t) ~p 4 (x) and ~ — q (t) ~ji (x)
i—i j  ., i—i j  j

are the parts of y and z, respectively , due to bending of the rocket and

y0
(x) and z

0
(x) are functions which define its original non—straight

64
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shape if necessary. The p
~ 

and q
~ 

are generalized coordinates which are

six of the sixteen (16) state variables which are used to model the

rocket’s motion.

The equations governing axial rotation are

= T / I A (B—2a)

and

= 
~~~~‘ 

(B—2b)

where T is the spin torque and ‘A 
is the axial moments of inertia of the

unbent rocket. Here, is the x—component of the angular velocity of the

rocket and ~ is the rocket roll angle.

Simple equations are also used to model the translational dynamics of

the point P (on the centerline of the rocket at its aft end). These are

x~ = u~ - (B—3a)

and

= FT/M — g sin °L’ (B—3b)

where 
~T 

is the thrust magnitude and ®
L is the fixed launcher elevation.

The equations for the Pj  and q .  are obtained as explained in Refs . 1

and 2. The results are

M (j ~~~~~~~~~~~~~~ + (K-FTr)p 
- (g sin ~)rn + F

T
C - 

~x� —

+ Di = o (B—4a)
and —— —

+ 
~~~ 

- ~~q) + (
~
_F
T ~

)q . - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (B—4b)

where 2 — (p
1 

p
2 

~~)T 
and q — (q

1 
q
2 

q
3
)T, Here also, M is (curren tly) a

3x3 matrix with elements

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,,

~~ _.‘w- -—.--—---—— - - 
~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~-•~~—_
~ - ~~~~- — V
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L
m . . f  a~P~P. dx (B—5a)

13 o

where ~ Is the mass per unit length of the rocket; K is a 3x3 matrix with

elements

K~ . = 1

L 

~~ (E I ~~~~
“)“ dx , (B—Sb)

where ( ) ‘  = d( )/dx and El is the bending stiffness of the rocket at

station x; I’ is a 3x3 matrix with elements

1.. = f 
~j f(x) dx (B-Sc)

where f(x) is the internal force per unit length; rn is a 3x1 matrix with

elements

L
m . f 

~ 
14

~~ 
dx . (B—5d)1 o

Furthermore, the matrices a, b , c and d are 3x1 matrices with elements,

L 

~~ 
y
0 

dx , (B-6a)

b1 
~~ 

dx , (B—6b)

and 

c
1 ~~ y~ dx (B—6 c)

f 
~ ~~~ 

z~ dx , (B—6d)
0

respectively. Also, g is the gravitational acceleration magnitude.

The angular rotation of the nose of the rocket is defined by the

angles 0N 
and as in the case of the two—body model. However, for the

continuous model these angles are determined by using

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

- - - 
~~~~~~
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0,.; = + 02N ~~~~~ ~ — 03N sin ~ (B—7a)

and

= 02N sin 0 + 03N C05 0 , (B—7b)

where

3
02N — —

~~ q1 ~~
(L) — z~~(L) (B— 8a)

i=1

and
3

03N 
— 

~ p1 ~~(L) + y
~

(L) . (B—8b )
j ab

Equations for Off—Launcher Motion

The motion of the rocket after end of guidance is modeled by using

mode shapes for a free—free uniform beam and using instantaneous principal

axes of the deformed rocket in writing the equations for rotational motion.

The use of instantaneous principal axes simplifies the equation of rotational

motion so that it is simply

(B 9)

where is the principal centroidal Inertia matrix, w = (w
1 
w
2 

w ) T is the

matrix of u
1
— , U

2
— and u

3
—components of the angular velocity of the principal

(Cu1
u
2
u
3

) system,

O w
3 

U)
2

U) w
3 

0 (B—b )

~~2 ~l ~

and

T = {T
5 

F
T
x
C 

[ u (0 ,t) + u3(xM~
t )/ xC 

— 
~~]

— F T x~ [u (0 ,t) + u2(x
M
,t)/x

C 
+ ~~]}T (B—li)

T11 V~ T1 ~~~~~~~ ~~~~~ - -
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In Eq. (B—li), x
~ 
is the distance from point P to the center of mass of

V 

the rocket, XM is the distance from P to the head end of the rocket

motor, u~ (0,t) and u~ (O ,t) are the slope of the bent (and bending)

centerline of the rocket at P and 0. and c~ are constant mechanicaly z

thrust misalignment angles.

The translatIonal motion of the rocket is governed by the equation,

= - V + F~/M + g , (B—l2)

where V Is the 3x1 matrix of u
1— , u2

— and u
3
—components of the velocity

of the center of mass C, ~ is a 3x1 matrix of similar components of the

acceleration of gravity and

= F
T

[ 1 u (O ,t)+cz u~ (0 ,t) - ‘i
T
. (B—l3)

In addition to Eqs. (B—9) and (B—12), the following kinematic

equations are needed- to complete the gross motion equations:

Rotation

— U)
1 

+ (w~ sin ~ + cos q )  tan 0 (B—l4a)

0 = cos ~ — sin ~ (B—l4b)

= (U)
2 
sin c~ + cos P)/cos 0 (B—l4c)

Translation

c~~~—s~ 0 cO 0 sO 1 0 0 u

= si~ ~~ 0 0 1 0 0 c~ —s$ v • (B—15)

0 0 1 —sO 0 CO 0 $ c4, w

As in the case of on—launcher motion, it is assumed that the rocket

may be non—straight before any bending occurs. Hence, the functions

u2
(x ,t) and u

3
(x ,t) are expressed as follows :

V - 
~~~~~~~~~~~ ~~~~~~~~~~ 

V - 
______•

~ 
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u2
(x,t) = u

20
(x) + P.(t)~~.(X) (B-16a)

and

u3
(x,t) - u

30
(x) + Q

j
(t)~~~(x)~ (B- 16b)

where u
20(x) and U30

(x) are the counterparts of y
0
(x) and z

0
(x) and the

P~ and Q~ 
are new generalized coordinates, i.e., they are not necessarily

such that P~ p1, etc.

The ways In which the P. and Q. change with time are determined by

solving the equations,

Mf 
(~ — 2w

1 ~~ — — w 2P) + (Kf — F
T 
r)P

+ (w 3 + w1w2)Zf 
- ‘
~i 

bf 
- (A~~ 

~ 
+ FT ~f

— FT [u~(0,t) + C X ]  ~(0) + (FIlM)2 rnf 
0 (B—l7a)

and

Mf 
(~ + 2w

1~ + - w 2Q) + (~f - F1rf)9 +

+ (W
3 

w1 — W
2

)&
f + W

1 ~~ 
— w1 b

f 
+ F

T ~f

+ F1
[u (0,t) + 0.

y
] + (F

1
/M)

3 ~ 
= 9.

where a subscript f is used to denote “free—flight.”

The matrIces appearing in Eqs. (B—17) are defined as follows:

P and Q are 3xl, i.e.,

= 

~ 1 ~2 
P3)

T 
(B—l8a)

and

(Q Q2 Q)
T 

(B—18b)

‘7— - - 
~~~~~~~~~~~~~~~~~ 
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M
f 

is 3x3, with elements,

L
m . - = f 

~ 
-

~~~
. 

-
~~. dx , (B—18c)

0 
1 3

Kf is 3x3, with elements,

L
K .,. = f 

~~ 
[E I q’:i” dx , (B—18d)

0

A.f is 3x3, with elements,

= 

L 

~~~~f (x )  dx , (B—18e)

af~ 
b
f~ 

C
f~ 

d f~ Zf and rn
f 
are 3x1, with elements,

L
a1 

= f 
~ ~~~

. u20 dx , (B—19a)
f 0

L
b
1 

= f 
~ P~ u30 dx , (B—19b )

f 0 -

L
= f 

~ ~~ . u 0 
dx , (B—19c)

f 0 1

L
= f 

~ ~~ 
u
0 

dx , (B— 19d)
f 0

L
= f a ~ 

(x_ x
C
) dx (B—l9e)

f o  I

and

L
= f 

~~ 
dx , (B—19f)

f 0

respectively .

— - -. .--
~~
. 
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Also in Eqs.(B—l7),

(F
T

/M) 2 = (F
T
IM) [u

2
(O ,t) + C L ]  (B—20a)

and

(F
1

/M)
3 

= (F
T

/M) [u
3
(0,t) — 0 . ]  . (B—2Ob)

Transformation Required at End of Guidance

Since two sets of equations of motion are used , one for the guidance

phase and one for  the free—flight phase , it is necessary that the solutions

to these equations be matched at the EOG. Hence, we require that the

positions and velocities of points P and Q and of the center of mass be

continuous at tEOG~ 
the time of EOG. Since three mode shapes are used

during each phase, we can also require that the angular orientation and

angular velocity of the nose of the rocket be continuous at t
EoG~

To enforce the desired continuity of state, we must first determine

the orientation and angular velocity of the centroidal principal axes of

the rocket, because the bending during free—flight is referenced to those

axes. The centroidal principal axes are oriented with respect to the Pxyz

system by using the angles U2 
and 11

3 
which are defined as follows:

= I - 

(B-21a)

and

U = [ f  ~ (y Q+n_y~)(x_x~)dx]/ I~ , 

L 

(B 2lb)

where x~ = t f ~xdxJ/M, y
~ 

( f ~ (y
0
+n)dx]/M and z~ = cf ~ (z

0
+~)dx1/M. V

0 0 0

The orientation of the Cu1
u
2
u
3 
system in space is defined by the

angles 4’, 0 and ~~3—2—1 sequence). At EOG, these angles can be expressed

in terms of 0 (the roll angle of the Pxyz system) 112 
and l~t3 

by equating

V. ~~~~~~~~~~~~ ~~~ ? ‘ ~~~~~~~~VV~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -V V -
~
-
~~

-:—— i--—- -—- — V. -V.V._
~ 
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elements of equivalent direction cosine matrices . The required

expressions are

= tan (O~i3c0 + l.12 s0)/ [cO
L+(113

s U2~~
)50L U~ ~~~~~~

0 = sin ’[sO
L +(112

c0 — 113
s0)CO L

] (B—22b)

and

= tan 1 {(_ 1
~
13sO L + sOcOL

)/(_ 11
2s0L + cOcO

L
)}. (B—22c)

Since the angular velocity of the cu1u2u3 system is that of the Pxyz

system plus the angular velocity of the cu
1
u
2
u
3 
system relative to the

Pxyz system,

~~~ 
U~ 

— U3~ X 
1.13 + 112

~~ 1
T 

(B—23)

The position and velocity of the center of mass C are obtai ned by

using the definitions of x~ , 
~~ 

and z
~ 

given above. The space—fixed -

coordinates ~~~~ and Z~ of C while the rocket is guided are found from

the equation,

X
C 

cO
L 0 

~°L 
1 0 0

= 0 1 0 0 cO —sO 
~C 

- (B—24)

ZC ~
0L 0 CO

L 
0 sO cO Z

C

Furthermore the u~—com~onents of the velocity of C are, during guidance,

u = , (B—ZSa)

V = —113
u + y~ — c2 z

~ 
(B—2Sb)

and

w a 1.12
u + z~ + (B—25c)

Because only a limited number of mode shapes are used , the position

and velocity of each particle of the rocket cannot be forced to be

.
V 
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continuous at EOG. However, if three mode shapes are used , the position

and velocities of three points on the rocket ’s centerline can be made

continuous at EOG. Alternatively , the positions and velocities of two

poin ts on the rocke t’s centerline and the slope and time rate of change

of slope of a third point can be made continuous at EOG. The latter

approach is taken because it is desired that the pitch and yaw angles of

the nose of the rocket and their time rates of change be continuous at

EOG. Also, to model the effects of the constraints during guidance, the

positions of points P and Q are forced to be continuous at EOG.

If we let X
Q 

be the position of the forward support and def:.o the

matrices

~~~~ ~~~~ ~~~3
(O)1

= 

~~~~~~ ~2
(x
Q
) ~P3

(X
Q
)~ (B—26a)

c~~(L) 4~~(L) 4~~(L)
j

U X
3 c

(x
Q
_X

~ )u3
_
~~ , (B—2 6b )

1.13 + ~‘(L,t) + y~ (L)
t=t EOG

11~ (x
Q
_x
C
) Z~~ , (B—26c)

+ ;‘ ( L ,t) + z~~(L)
- tat

EOG

- I

- 

( 3— 26d )
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and V

1.12

= 
~2 Q x

C
) 
~~C 

‘ (B—26e)

~
‘2 + ~~(L,t)

EOG

then,

P(tEOG
) = 

~~ ~y 
‘ (B—27a)

9(t EOG
) = O~ , (B—27b )

~
(tEoG

) = 
~~~~

‘ 

~y 
(B—27c)

and

~
(t
EoG
) = ~~ b . (B—27d)

The above “initial” conditions (those at EOG) on X
C~ 

‘f~~ Z~ , u, v, w ,

iL’, 8, ~~, w , P and Q can be used to continue the solution of the equations

of motion during the free—flight phase.
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APPENDIX C

PRINCIPAL AXES ROTATIONS

DUE TO TRANSVERSE

VIBRATION

Introduction

Due to slenderness of most free—flight rockets, there is generally

little coupling of their transverse vibrational and rotational motions

subsequent to end—of—guidance (EOG) if aerodynamic forces are not signif-

icant. Hence, as explained in the body of this report, the free—flight

motion of a slender free—flight rocket which is caused by bending vibrations

prior to EOG is essentially composed of a uniform, transverse rotational

motion of the rocket about its centroidal principal axes, a vibrational

motion with respect to those axes, and a translation of the rocket’s

center of mass. In this appendix, we present an approximate method for

determining the transverse angular velocity of the rocket’s principal axes

at EOG and, hence, the transverse rate due to transverse vibration. The

two—body model described in Ref. 2 and herein (see Section 2 and Appendix

A) is used.

Principal Axes of the Two—Body Model

The orientation of the centroidal principal (see Fig. C—l) reference

frame Cx ’y ’z’ relative to the Cxyz reference frame (which is parallel to

the Body 1—fixed C1
x
1
y
1z1 reference frame) can be def ined in terms of the .~~~

inertia characteristics of the bodies and the angles 02 
and 0

3
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Fig. C—i. Principal axes of the two—body model.

The inertia matrix of the system of two bodies using the Cxyz frame
as the reference is,through first order in 02 and 0

3~

—83
J

a _
~3J 1

T 0 , (c—i)

8
2
J 0

where

I
A A

1 + B
l , (C—2)

the sum of the axial moments of inertia of Bodies 1 and 2, and

J — B
2 

— B
1 + a r

2
(1
1
+r
2
) . (C—3)

In Eq. (C—3), B2 is the centroidal transverse moment of inertia of Body 2,

a — m
1m2

/ (m
1+m2 where m

j is the mass of Body J , r2 = 
~~2

l and L
i 

—

— — — — — V—— - -. ~~~~~~~~~~~~~~~~~~~~~ - - - _~~ - o ..— - _ _ _ _
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Furthermore ,

= A
2 

+ B
2 

+ a(L
1
+r
2
)2, (C—4)

where A2 is the centroidal transverse moment of inertia of Body 1.

Now, we let I’ denote the principal centroidal inertia matrix of the

system and 112 
and 11

3 
denote small angles which define the orientation of

the centroidal principal frame Cx’y’z’ with respect to the Cxyz frame.

Then , by using the fact that

1 113 
1.1

2 
1 1-1~ 

_1.12

1-13 
1 0 ~~

‘ 

~~1.13 
1 0

~ 1-12 
0 1 112

0 1

we get ,through first order in 1-12 and 1.1
3~

1.1
2 

— (C—5a)

and

113 
a 

~~~~~~~~~~~~ 
(C—Sb)

Angular Velocity of the Principal Frame

The angular velocity of the principal frame Cx’y’z’, as resolved in

terms of components in that frame , is

1 1i~ 1.12

— — 1--l i 1 0 
~2 + U 2 , (C—6)

I
~
1
2 0 1 113

where 
~~ ~2 

and are the x— , y— and z—components, respectively, of the

angular velocity of the Cxyz reference frame. By neglecting terms which

are second order in 1.12, U3~ 1.12 
and 113, we get the following expressions

for the components of w’:

- - ~~~~~~~~ V. __~~~~~~~ 
—

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~_
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Wi 
= 

~l 
‘ (C—7a)

~2 ~
i13~l 

+ 112 (C--7b)

and
= 

~3 
+ 11~~~ + U~ (C—ic)

Equations (7) may be used at any time, provided the assumptions of

small angles and angular rates made above are valid. We are, however , most

interested in the angular velocity of the principal axes reference

frame at the time of EOG, since if there is no thrust misalignment and

negligible aerodynamic torque, the angular rates in pitch and yaw present

at EOG will persist during free—flight.

If the constraints adopted are such that points P and Q (see Fig. Al)

can only translate along a fixed straight line during the guidance phase,

then at the EOG when t=tEOG (and letting a subscript 0 denote the value of

a variable at that time)

~2O 
= _ (k

l
/k
2
)
~

1
No , (C—8a)

~30 
= _ (k

l/k 2
)
~

$
NO , (C— 8b)

020 — — kl (
~ l

l
~
1
No + 0

N0~ 
(C— 8c)

03Q 
— W

30 
— k

l
(_
~l

Q
No 

+ 
~
‘No~ 

, (C—8d)

— _ (k
l

/k
2

)ONO , (C—8e)

— _ (k
l/k2)~I~No 

, (C~8f)

020 k
1 °N0 (C—8g)

and
030 — k

1 
‘
~NO (C—8h)

— - ——-v -- —
~~~~~~~~~~ 

-
~~~~~~~~

— 
~VVV. ~V._~~~_  — w.-__

~
__

~_~.L-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In Eqs. (8),

= d/d
1 

(C—9a)

and

k2 
= did

2
, (C—9b )

where

d = d
1 

+ d
2 , (C—lOa)

— L
~ 

+ r
1 

(C—lob)

and
+

d2 
— L2 + r

2
. - (C—l0c)

From Eqs. (C—5) and Eqs. (C—8) we find that at EOG, the values of

1.1
2 
and 1-13 

are

1120 - ~ k1 ®~~ (C-h a)

and

1130 = ~ k1 ‘~NO’ 
(C—llb )

respectively, where

= J/(I .~— I~ ) , (C—12)

and the values of 1.12 
and 1-13 

are

1-120 ~ k1
(~Z1 

‘
~NO + °N0~ 

(C-13a)

and

1.130 — 5 k
1
(—c~1 °NO + ~NO~ 

(C—13b )

respectively. By using Eqs. (C—il) and (C 13) in Eqs. (C—7 ), we get the

following expressions for the values of and W~~ at EOG:

— (dk
1 

— k
l
/k
2)~NQ 

(C—14a)

— (5k
1 

— k
l
/k
2
)
~
VNo 

(C—14b)

1•
Note: Here, 2.2 is such that &2 — 2.2 ~2; i.e., it is the X2—COmpOflent

- 

V 

of the vector from C2 to Q. Hence , it may be negative.
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The transverse angular rate due to transverse vibrations is therefore

= (5k
1-k1

/k
2
) ‘.Iê~0 + (C-15)

Also, the aim change due to transverse vibration is

= 5k~J0~~ + - 
- 

(C-l6)

- —w - ----- —- — 
~~~~~~~~~~ 

— ~~~~=
—

~~~~
_-__V. -__J - ‘- - — -—-i--

-
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APPENDIX 1)

TWO—BODY MATHEMATICAL MODEL

WITh FLEXIBLE SUPPORT S 
V

Introduction

Since the structure which supports a rocket until end of guidance

(EOG) is in reality not rigid, the issue of whether the flexibility of

this structure contributes to the bending of the supported rocket needs

to be addressed. Furthermore, the effects of frictional forces, which

necessarily act on the rocket at its points of support, must be considered

as a possible mechanism for causing transverse vibration of the rocket.

To this end , the two—body model presented in Appendix A was extended to

include the effects of support flexibility and friction.

Extended Model

The physical model is depicted in Fig. D’l. It is identical with that

used in deriving the equations given in Appendix A, except the rocket is

supported in such a manner that forces are exerted on it through small

“shoes.” The shoes in the present model are not constrained to move on

rails, but are assumed to slide on the interior of a “smooth” tube.

Although the tube is smooth, it is not perfectly so; hence, frictional

forces are assumed present at the rocket/tube interface.

Equations of Motion

Because the points P and Q can move transversely as well as longitudi—

nally , a general equation for motion of the mass centers of the two—body

81
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ZL

z

Fig. D.l. Two—body model in flexible tube.

system is required. The center of mass C is located by the vector,

— 

~P 
= 1-

~~ l~~2~ 
+ (D—1)

where ji — m
2
i(m

1
-hn

2
) and m~ is the mass of Body j. Here (as in Appendix A),

the aft body is Bo~v 1. The acceleration of C is

11 d~ I2dw
- + ‘-‘ [ ~~~~~ ~ + ~~~~2x(Z

1+r1
) i]+ 

~~~[t x E2 + o)x(wxr
2
)

(D—2)
where ~2 is the angular velocity of Body 1, w is the angular velocity of

Body 2 and ~d( )/dt denotes the derivative with respect to time of ( ),

treating the unit vectors associated with C~x~y~z~ as non—rotating .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _V - - - - _ _

- —r — __. . - ~~~w ~~~~~
,_ _  •- _  V _— — - ~ — ~~-
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If we let

1 0
3 

_0
2

~~~
= -0~ 1 0 (D—3)

0
2 

0 1

and

1 ‘~ -o cO
L 0

= —~1’c~+Os~ c-~ s~ 0 1 0 (D—4)

‘Ys~+Oc~ 5~~ C~~ - 

~°L 
0 cOL

denote matrices which define transformations from the Body—i basis (i~~i1~
k
1
)

to the Body-2 basis (
~2’~2’h~ 

and from the fixed basis (I,J,K) to the

launcher basis (iL,jL,kL), respectively, then Eq. (D—2) can be replaced by

the matrix equation (launcher basis),

~ç, .cT 11[~~& + A
T

WW 

~2 
+ AT~~w A ç~ ..(Z +AT

A
T 

~~ ~2/l~ 
+ P~ /M + FQ/N + 

~T
I/M + g + cT ~ ~

T 

~~

where — 

~~l ~2 
ç~~)

T 

~ 
= (2.~ 0 0)T ~ = 

~ 2/i + 
~~~~

‘ 
~2/l 

(0 
~2 

~
3

) T

= (r
2 

0 0) T, F~ = (F~ F~ F~ )
T
, FQ 

= (F
Q 

F~~
, 
F
Q 
)
T
,

X
L 

3TL Z
L 2’L L Z

L

= (F
T ~Z FT 

_ct
yFT) T

, M — m
1
+m
2 
and g — (— g sin ®

L 
0 g cosO

L
).

Here , ct
y 

and c~ are thrust misalignment angles. Also,

— (i~ 5 
~ 

)
T
, (D—6)

L y
l.. Z

L

where and are the displacements of P in the y~~and z~~directions, -

~~~ZLrespectively .

~~~~~~~~~~~~~~ W a W r~~~~~~ 
i

_
_~~~~~~~~~

’__ __

~~~~~

” — V .-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—
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84

Equation (D— 5) can be used to find and , if 
~
, FQ~ !T’ ±2/1 

and

~ are expressed in terms of the State variables, ~p ,0,cp,02
,e
3
,x , 5~

• . . . 
~L 

ZL

~1
’ 

~2
’ 
~3

’ 
~2 

= 

~2 ’ ~3 
= 0

3~ 
x~ . 3~ and 3 and time. We shall

~
‘L ZL

consider and FQ 
later.

The equations for the rotational motion of the system of two bodies

about their center of mass are the same as in the “free” case considered in

Appendix A, except an additional torque is now applied to the two—body

system. It is due to the forces on the system at P and Q which produce

transverse and axial (x
1
—axis) torque components and can be expressed

as

I
= - x F~ +(p2+9.~) ~C F

Q 
+ + T

Q 
(D—7)

add

where and T
Q 
are torques about P and Q, respectively. They are assumed

to be axial and due to friction.

Additional terms must also be added to ~he equations which govern the

rotation of Body 2 relative to Body 1. These can be found by considering

the equation for rotational motion of Body 2 about the accelerating point R.

We have

~2/R 
— 

~R 
- m

2 E2 X , (D—8)

where 
~2/R is the time rate of change of the angular momentum of Body 2 due to

rotation about R, TR is the torque about R, and a
R is the absolute accelera-

tion of R . The acceleration a.~ can be expressed in the form,

(D—9 )

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~.2— .V.—- — ~~~~~~~~~~~ .~~~ ~~~~~~~~~~~~~~~~~~~~~ 

—
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Also,

= 

~2/1 
+ + 

~~~~~ 
X F

Q 
+ m

2r2 
x g , (D— l0)

where T
211 

is the torque on Body 2 due to the torsional springs and

dampers used to represent the flexibility of the rocket being modeled.

Now, the acceleration can be expressed as [see Eq. (D—l)],

= 

~C 
— 
~i 

— 

~&l~~2~ 
(D—ll)

where 11 = m
2
/M. Obviously,

= 

~C 
— 

l~~2~~ 
(D— 12)

- 

V 
However, we also have, from Newton ’s second law,

= + 
~~ 

÷ 
~P 

+ FQ)/ M ~ (D—13)

and by using this result along with Eq. (D—lO) in Eq. (D—8), we get

~2/R 
= 

~2/l + — U E2 x(FT ÷ F~) + [(1_ U )r
2 + &2’ X FQ 

. (D-l4)

The additional torque on Body 2 due to the flexible supports and f r ic t ion

is therefore

12 = — 

~~2 
x (F

T~
I
~
Fp ) + [(1—j.i )r 2+2.2 } X FQ . (D— l5)

add

Definition of the Forces and TorQues at P and Q

The forces at P and Q are assumed to be caused by deformation of the

supporting structure, e.g., tube, and coulomb friction. The possibility

that the supporting structure will not always be in contact with the

rocket at either , or both , points P and Q is allowed for by simply enclosing

the rocket in a deadspace “cylinder” of thickness e. For the purpose of

illustrating how the forces at P and Q are defined , figures which imply the

- ~~~~~~~~~~ —~~~~ ~~~~~ 
______
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rocket is within a tube are used. However , the model of the forces is

also representative of other types of launchers.

In Fig. 0—2 , the displacement of point P from the launch axis

(XL_ax~
s) is represented by c5~ and 3~ in the 3~

. (y
L
_
~~
ds) and k

~
(z
L
—axis)

ZL
directions, respectively . Let

= 4
P ~.L 

+ 
~P 

(D—l6)
ZL

We say that if

i~ > E ~ (0—17)

where j is a unit vector which rotates with the rocket, then the component

of the elastic restoring force in the y—direction is

= — 

5 

. j  , (D—l8a)

where 5 is a constant in this study , but could be considered a function of

the distance traveled along the tube. Similarly , the z—component of the

restoring force is

= — 5 ~5 
. k , (D—18b)

if j 3  • > e, where ~ also rotates with the rocket.

o

A 
Rear View

I

Fig . D.2. Displacement of point P.

— -,. — V—— 
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Referring to Fig. D—3, if ~ (the spin rate) is nonzero, frictional

forces which oppose such spin are present if the rocket is in contact with

the supporting structure. If # 0 , ~ > 0 and 0 for ~ = 0, we

have the transverse frIctional force components,

f~ = - p~ N~ (D—19b)
y z

and

Up N~ . (D—19c)
z y

‘py

11
N I—p

-pz

Fig. D.3. Normal and frictional forces.

In addition to the restoring and coulomb friction forces, a viscous

damping force is used to approximately model structural damping. The

transverse components of this force are

— —~~,lL~ d(8~ • 3)/dt (D—20a)

y
and

— 5 d(~~ • 
~)/dt , (D—20b)

where c~is a constant, and the axial component is zero.

V 
~~~~~~~~~~~~~ 
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-
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If the rocket is translating in the X
L 
direction, then an additional

force due to friction acts at P in the negative 
~C

di
~
ection. The x—

component of this force is

• F~ U~1 IN~ I + IN~ j 3  , (~~ > 0). (D—21)
X y y

The forces acting at Q have the same forms as those acting at P; hence,

if the subscript P is changed to Q in Eqs. (D—18) through (D—21) the forces

acting at Q are obtained. However, the displacement of the point Q

transversely is more complicated than that for point P, since the rotations

of both Bodies 1 and 2 contribute to displacement of Q. The displacement

components and (launcher basis) are given by the equation,
ZL

0 1 —~c4~+Os’I~ ‘Ys~+0c’~

— 0p + 
~23 ~‘ 

—
~~~~~ (~L~ + + AT (r 2+~2)] ,

0 0 —0 s~ c~
L ZL

where

0 0 0

~23 — 0 1 0 • 
(D—23)

o 0 1

Thus, if products of small angles are neglected,

0 — 6~ +{‘(r1
+9.
1
+r2+P~2) + (83c 6

2
s~ ](r

2+9~
.
2) (D—24a)

and

— 0p 
0(r

1
+t
1
+r
2

+9~2) + E93S~ 
— O

2
c~ ](r

2
+~2

) (D 24b)
zL zL

The torques on Bodies 1 and 2 due to all additional (those not

present in free flight) sources can be found by using Eqs. (D—7) and (D— ].4).

—‘S5— .~~~ ~~~~~~ ~~~~~~ -V — ~~~ —
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The total torque on the system about its center of mass , obtained assuming

that ~‘, ~ 0~ and 0
3 

are small angles, can be expressed as

IC 
— T

A i1 
+ T

1 ~l 
+ T

2 ~~ 
, (D—25)

where

TA 
— {T~ + TQ + T —~r2

[9
2
F~ + 03F~ ) + I (l—ii)r2+t2][02F +O

3
F
Q 
]}

y
(D—26a)

= {~82
r
2
P~ + [r

1
+IL(t

1+r2))F —[(l—M)r
2 + £

2
]O
2
F
Q~

+ 2.2IFQ 
— cL

y 
x~ FT 

+ Ti
~ 

r5 N~

+~~i r N (D 26b)
and Q s

T
2 

0
3
r
2
F
~~

_ [r
1
+M(~~+r )]F~~

_ [(l—~)r
2 
+ 

~~ 
0
3 
F~~

+ [(1—U)r
2 
+ t

2
) F

Q 
— c L x

~ 
F
T 

— r
Vy y

IL
Q
r
5
N
%,
} 
~ (D—26c)

where T~ and TQ 
are axial torque components due to friction at P and Q,

respectively, T is the spin torque, assumed to be applied by an eroding
spin turbine,

Y (D-27a)y N~~— 1i~N~ , ~ > 0

and

F~ — Z 
(D—27b)

z Np +U~N~~ 3 >0.
z y

Force components with Q subscripts are of the same form as those with

subscripts. The underlined terms in Eqs.. (D—26) are zero if x~ — 0. They
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represent the “couple” parts of torque components due to frictional forces

acting axially at P and Q, whereas, the terms involving F~ and F
Q 

represent

the remainders of the components. Here r5 is the distance from the rocket

centerline to the end of a “shoe.”

In a similar manner the transverse torque on Body 2 can be expressed as

12 
T
3 ~ 

+ T
4 
k1 , (D—28)

trans

where

T
3 

— 1 iir2[82F~~+ F~~] 
— [(l—M)r2+i21[O2

F
Q
+F
Q
]

and 

—C~ —kG~ + IIQ
r N }  (D—29a)

— {I1r2[83
F~ ~~ ] — [(l—M)r

2
+L
2

] [0
3
F — F

%,
]

- k0
3 -
- M

Q
r N~~} (D-29b)

where again the underlined terms are zero if x.~—0. Here, as in Appendix A,

k is the stiffness of the torsional springs which connect the two bodies and

c is the viscous damping coefficient.

Final Form of the Mathematical Model

The complete mathematical model used to obtain the results presented

in this report regarding the effects of support flexibility and friction

as follows :

‘4- — ~S_~~~~~~~ VPW
~~
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Equations of Motion

(D— 30a)

0 = 

~2 ~~~~ 
— 

~3 
sin ~~, (D—30b)

— 

~2 
sine + cos ~~, (D— 30c)

X U , (D—30d)

(D—30e)

•~~
‘L ~‘LOP 

— , (D—30f)
Z L ZL
= T~/I~ [TA 

given by Eq. (D—26a)], (D—30g)

S 

— B x + 1 1 T , (D—30h)

where

I inertia matrix defined in Appendix A,

B — coeff icient matrix defined in Appendix A,

— 

~~2 ~3 w2 W
3 

e~ 9 ) T (n—30i)

and

I (T1 T2 T3 T4 0 0) T 
~~~ j — l ,2 ,3,4

defined by Eqs. (D—26b), (D—26c), (D—29a) and (D—29b), respectively.

— b cost — c sine +((F~ + F0 
)cos~

~“ ~
— (F~ + P

Q 
sj~~1~’M

+ (FT/Mf ~
V + cos$ + ct sine] (D—30j ) 

V

— b sine + c cost +( (F~ +F )cos~
zL z 2 .1

+ (F~ +F~ ) sin4’3/M
y  z

— sine + 
~ 

cos~ ] + g , (D-30k)

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
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where

b — — (r1 
+ u(2,1+r2) 1(~1

Q
2 +

— Ur 2 [2~1
W2 

— 0
3
c2
1 + 

+

and

c — — [r
1 
+ U (& 1+r2)] [~21~23 

— 
~~~~~~ 

.
— Ur2[2~21W3 + 02c21 + 

— w2]

Equation for Angular Momentum

H — H
1 ~l 

+ H
2 ~~ 

+ H
3 ~l 

(D—3l)

where

H1 
(A

1
+B1

)~2
1 , 

(D—32a)

H
2 

—0
3

[B
2 
+ a r

2 
(~1~~2~

-B
1
]~ 1 

+ [B
2 
+ a r

2
(2~1+r2

)]w
2

+ (A2 + 82 
+ a

1
+r
2
)
2
1c2
2 

(D—32b)

and

H
3 

— 6
2

[B
2 
+ a r

2
(9.
1+r

2)—B1
]~ 1

+ [B2 + a r
2
(R.
1
+r
2

)]w
3 
+ [A2 + B2 + a(2.1+r 2

) 2 ]c23 . (D—32c)

Equations for the Angles 0N and

— ~3 + 82 COS~ — 8
3 
sine (D—33a)

and

— ~v + 82 sinG + 0
3 

coaG . (D— 33b)

4 .
i
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